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1. INTRODUCTION

This report is concerned with the description of a computer

program for solving a certain class of optimal control problems

known as the linear-quadratic problem (LQP).1,5,6* The LQP is

sometimes referred to as the neighboring optimal guidance

probleml,3 even though it is applicable to both guidance and

control problems. The distinguishing feature of the LQP is that

it can be solved without iteration (whereas general optimization

problems usually require iterative numerical techniques). Thus,

it is useful in the initial portion of guidance and control

design for determining approximate feedback gains and giving

insight into the systems.

The computer program described in Appendix A solves the

following problem:

Minimize: J=TS xf + [xTA(t)x+2xTN(t)u+u B(t)u]dt (1.1)nifize: J=x f t

tO

Subject To: k=F(t)x+G(t)u, x(to)=x6  (1.2)

xf= , (1.3)

where x is an n-vector, u is an m-vector, and is a

k: n -vector. The initial and final times t and t are

assumed to be known, and the matrix B(t) is assumed to be

symmetric and positive definite on (to tfl. It is a necessary

condition that B(t) be at least positive semi-definite; the case

when B(t) is not positive definite is called the singular case

*Numbers indicate references listed in Section 5.
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and its solution is presented in Ref. 7. If one is only

interested in using the computer program, then one can proceed

immediately to the self-contained Appendix A.

In Section 2, the solution for the problem defined by

Eqs. (1.1)-(1.3) will be solved without recourse to optimal

control theory methods (i.e., without using the calculus of

variations.or the Pontryagin maximum principle). To demonstrate

the essential features of the justification, the quantities 4
and N(t) will be assumed to be zero in Section 2. The case with

and N(t) included will be justified in Section 3 and optimal

control theory will be utilized. It should be noted that the

usual application of Eqs. (1.1)-(1.3) is with and N(t) equal

to zero, so Section 2 should be sufficient justification for

most of the cases which arise in applications.



2. NETHOD JUSTIFICATION: TWITHOUT

OPTIMAL CONTROL THEORY

In this section the optimal feedback control for the

problem defined by Eqs. (1.1)-(1.3) with M=O and N(t)=O

iwill be determined, i.e.,

Minimize: J=xffx +1 SfxTA(t)x+uTB(t)u]dt (2.1)
o

Subject To: =F(t)x+G(t)u, x(t )=x (2.2)

That is, we wish to determine the control

u=f(t,x) (2.3)

i.e., a feedback control function, which causes J (the perfor-

mance index) to be minimized. In Section A.2 of Appendix A

the typical origin of the terms in Eqs. (2.1) and (2.2) is

discussed. Also, as noted in Section 1, B(t) is assumed to

be symmetric and positive definite (the nonsingular case).

We could use the calculus of variations or the maximum

principle to solve this problem, however knowledge of varia-

tional theory is required. Instead, we shall employ a "trick"

which is employed in many types of optimization analysis.

This trick involves the introduction of an arbitrary function

with specified continuity and differentiability properties,

which will be chosen later to help us out. (Such a trick is

also used when one introduces Lagrange multipliers into an

optimization problem, i.e., they are first treated as arbitrary

3
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functions and then particular functional forms are chosen to

aid in the solution of the problem.)

Let S(t) be an arbitrary differentiable, syrnuetric

nxn matrix function.
d- T 0 (2.4)

Property: [ t d([xTS(t)xdt-[xTs(t)x]t . (2.4)
t 0o

0

Proof: The integral is an exact differential in xTSx, so:

t T t 0t 0 t 0o o o o

If Eq. (2.4) is added to Eq. (2.1), the problem is not

changed because Eq. (2.4) is identically zero. Thus, performing

this addition:

J=TS x - x T(t)x + S tf TAx+uTBu+ d -(x Sx)]dt.

Note that Sf is a given nxn matrix, whereas S(tf) is (as of now)

just an arbitrary nxn matrix function. Combining terms outside

the integral and differentiating under the integral results in:

J=x T(S f-S(tf))x f+x TS(t6)x

+- [xTAx+uBu+SxxS x+ x+x SAi]dt
o

But, i=Fx+Gu (note this is the point where the constraints get

into the problem), so:

J=xT(S -S(t )]x ,+-X S(t)x 0  t xTAx+uTBu+xT FTSx++u TGTSx
f f f +x0tX 0  t

+xTSx+x SFx+xT SGu]dt

or,



J=xT S+.IST if tf -T TJ= -S( ]x S (t )x + xT(A+FT S+S+SF)x+xTSGu

+u TGTSx+u Buldt (2.5)

Note that the integrand is a quadratic form in x and u, and

that (as of now) S is an arbitrary matrix. We shall now choose

S(t) in such a way that the optimal control is obvious.

If we can write the integral in J as:

S t(Kx+Lu) T(Kx+Lu) dt (2.6)
0-

with L-1 existing, then u=-L- 1Kx is the optimal control because

the integrand is the square of (Kx+Lu), which implies zero is

the smallest value the integrand can take and u=-L- Kx causes

the integrand to equal zero.

Let us now expand Eq. (2.6) and equate it to the integrand

of Eq. (2.5); this rrwill then imply how we should choose S(t)

to get the obvious control solution form of Eq. (2.6):

f (Kx++L)T(Kx+Lu)dt= S TKTKx T TLu+u TLTKx+u LTLu]dt (2.7)
0 0

Equating terms wvith the integrand of Eq. (2.5) implies

KTK=A+FTS+ +SF (2.8)

KTL=SG (2.9)

L TK=G TS (2.10)

LTL=B (2.11)

Since B is syrmmetric and invertible, L is also symmetric and

invertible, i.e.,

LL L2B LLL=B .L =B -L B'.
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By Eqs. (2.9) and (2.10)

LTK=GT S -K=L - I GTS=B4GTS. (2.12)

Finally, by Eqs. (2.8) and (2.12):

(EGT T(B" GTS)=A+FT +±S

or

S+SF+FTS+A=SGB 2B 'GS ,

where the symmetry of B - and S has been used. Then,

S=-SF-FTS-A+SGB- I GTS (2.13)

Since xf depends implicitly upon u, we can remove the implicit

u-term from J by choosing:

S(tf)=Sf (2.14)

To summarize, then, if one defines the Riccati equation:

- =-SF-FTS-A+SGB- GT S.

with boundary condition:

S(t )=S ,

the quantity J may be written as:

J=-x S(t )x+ t(B-cGTSx+B u)T(B-GTSx+B u)dt . (2.15)

Then, the term outside of the integral is independent of u

(since xo is specified and S(t ) is well-defined by the solution

of Eqs. (2.13) and (2.14))and the smallest possible value of the

integral is zero, and the integral is zero if:

B 'G Sx+B'u-=

u=-B-GTSx . (2.16)
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Equation (2.16) defines the optimal feedback control, and

J=x TS(to)x is the value of the performance index due to the

optimal control.

Example: I'n.: uJ= (ax2+bu2)dt (2.17)

Sub. to: i=u, x(o)=xo , T specified (2.18)

Note that the system is a linear, time-invariant system, and if

classical linear control were employed here, a linear feedback

control with constant gains would be the typical result. The

usual result with LQP theory is a linear feedback control with

time-varying gains. However, by letting t f=T be large, the gains

are approximately constant. (Constant gains may be obtained by

choosing T= ao ; see Ref. 5.)

Let us now compute the solution of the problem defined by

Eqs. (2.17) and (2.18). As noted above, if T is finite, then

time varying gains are obtained. However, we should expect the

gain to approach a constant as T becomes large. The solution

to this problem is defined by Eqs. (2.13), (2.14), and (2.16):

u=-B- GTSx (2.19)

with: B-  - , G=1, and S is the solution of the Riccati

equation:

S=-a+ S2

The solution of the Riccati equation is:

S(t)=1 i1-e2~a/b (t-T) (2.20)
= ab 1+e (t-T) (2.20)



Note that for T>>t, S(t) I - . Plots of various S(t) as

T varies are shomwn to the right;

S(t) is basically constant

except for a transient near

t =T. This behavior is also

typical of more complicated

time-invariant systems. T1  T2  T3  T4 T5 - t

Thus, for this problem, S(t) 4- if T-,t and the

approximate optimal linear feedback control is (from Eq. (2.19))

u=-() (1)~ x=- x . 1 (2.21)

This result agrees with intuition in that: (i) u is negative

if x is positive, which implies that the control attempts to

drive the state x to zero; (ii) u is proportional to a/b

The latter result implies that if a,b, then there is more

weighting on the state in the performance index and the result

is a large control value to maintain a small value of x. On

the other hand, if a,<b, then there is more weighting on the

control in the performance index and the result is a small

control value (relative to the value of x).



.ETHOD JUSTIFICATION: WITH

OPTIMAL COTFTTL THEORY

In this section the optimal control problem defined by

Eqs. (1.1)-(1.3) will be solved in general. The solution

technique is well knomn, and is similar to the developments in

References 1 and 6. The underlying optimization theory is

discussed in Refs. 1, 5, 6.

To develop the desired solution it is convenient to adjoin

the terminal conditions, Eq. (1.3), to the performance index,

Eq. (1.1), with the constant Lagrange multiplier vector q, and

the differential equations, Eq. (1.2), with the time-varying

(in general) Lagrange multiplier vector p. Then, the augmented

performance index is:

J=-xTsfxf +q T(x t f xTAx+ 2 xT Nu+uTBu
o

+p T(Fx+Gu-)]dt. (3.1)

The Hamiltonian for this problem is

T T T T
HL(x Ax+2x Nu+u Bu)+ p (Fx+Gu) , (3.2)

and the resultant necessary conditions of optimality are:

p=-H x  (3.3)

H =0 (3.4)

Pf=Sfxf+M q (3.5)

where H is considered as an (nxl) vector and Hu is an (mxl)

9
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vector. Since the problem is nonsingular (i.e., B(t) is

positive definite), the control, u, may be eliminated from

the problem by Eq. (3.4), i.e.,

T rm
Su=N x+Bu+G- =0  (3.6)

which implies

u=-B-1 (NTx+GT-). (3.7)

Then, upon substitution into Eqs. (1.2) and (3.3), we have

x=Fx-GB- (NTx+GT)

-Ax+NB -1(NTx+Gp)-FT

or,

=(F-GB-1NT)x-GB- p (3.8)

=(N E-1NT_A)x+(NB- 1GT_FT) (3.9)

Since Eqs. (3.8), (3.9), (1.3), and (3.5) are linear in x, p, ,

and q, it can be shown that there must exist linear relationships

among the variables, and we introduce the unknovm (for now)

matrices Q, R, S, and V involved in these relationships

p(t)=S(t)x(t)+R(t)q (3.10)

S=V(t)x(t)+Q(t)q. (3.11)

(It can be shown that the resultant S(t) is symmetric, 1 ,5 and

we shall assume this now to ease the notation.) Thus, among

the 2n+2k -variables x, p, q, and P there exist n+k independent

variables, which by Eqs. (3.10) and (3.11) have been chosen to

be x and q. Upon substitution of these relations into Eqs. (1.3)

and (3.5) (i.e., the terminal boundary and transversality

conditions), we obtain



Mx =V(t f)xf+Q(t f)q

S(t )x +R(t f)q=Sf x 7T

or

(f-V(t ))x +Q(tf)q0 (3.12)

(S(t )-S )xf+(R(t f)- T )q= , (3.13)

which are identities in xf and q. This implies that the

coefficients of Eqs. (3.12) and (3.13) must vanish, and thus

V(t f)=M, Q(tf)=O , S(t )=S , R(tf) = M  . (3.14)

Equations (3.14) define boundary conditions for the unknown

matrices. If differential equations could be developed for the

matrices, then the matrices could be computed by integrating the

resultant equations backward with the boundary conditions of

Eq. (3.14). We shall now determine such a set of differential

equations by differentiating Eqs. (3.10) and (3.11), substituting

the results into Eqs. (3.8) and (3.9), and then interpreting the

resultant forms.

Before we make these computations, it is instructive to

answer the question of why Eqs. (3.10) and (3.11) were introduced

in the first place. Our goal is a feedback control, say

u=g(t,x, ) . (3.15)

We are guaranteed the existence of relationships of the type

assumed in Eqs. (3.10) and (3.11) by properties of linear

differential equations (i.e., Eqs. (3.8), (3.9)) with linear

boundary conditions (i.e., Eqs. (1.3), (3.5)). Such relations

are desirable because if S(t), R(t), V(t), and Q(t) can be

determined, and if Q(t) is invertable, then the optimal feedback
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control can be computed from Eq. (3.7), i.e.,

u=-B x+GSx+G - Vx) (3.16)

!e shall come back to this equation after determining the

defining differential equations for S, R, V, and Q.

First differentiate Eq. (3.10) and substitute the result

into Eq. (3.9), i.e.,

Sx+Si+Rq=(NB-1N -A)x+(NB - 1GT-F T ) (Sx+Rq) . (3.17)

Then upon substitution for x (from Eq. (3.8)) and upon rearrange-

ment, we obtain

S+SF+F S+A-(SG+N ) 1 (SG+N) T]x

+[R+(FT-(SG+N)B GT)R)Eq=0 (3.18)

Since x and q are the independent variables, Eq. (3.18) is an

identity in x and q, and thus, the coefficients must vanish,

which implies:

S=-SF-F Ts-A+ (SG+N)B ( S G+ )  , S(tf)=Sf (3.19)

R=[-F +(SG+N)B-GT]R , R(t f)=iT , (3.20)

,here the boundary conditions at tf are obtained from Eq. (3.14).

The equations for Q and V are obtained by differentiating

Eq. (3.11) (noting that T is a constant) and substituting for

x, which gives

rV+v(F-GB-1 (NT+GTs)) ]x+rQ-VGB- GTR]q=O (3.21)

This is also an identity in x and q which implies that the

coefficients must vanish. Since the equation for V is the

transpose of R,V(t f)=M=R(t) T , and S is symmetric, it follows that:

V(t)=R(t) T  
(3.22)

so the variable V(t) is eliminated. The equation for Q, with
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boundary condition from Eq. (3.14), is

-RTGB- GTR , Q(t )=0 • (3.23)

The resultant optimal control is then:

u- - )]x-B-GTRQ - 1 , (3.24)

where 5, R, and Q can be determined by Eqs. (3.19), (3.20), and

(3.23).

Note that Q occurs in the optimal control, Eq. (3.24), only

in the product RQ- . This motivates one to develop differential

equations for (S-RQ-1RT) and RQ - (as opposed to S, R, and Q),

and it can be shovrn,6 that the resultant differential equations

are exactly like the S and R equations. However, one cannot use

these until tf- F ( > 0) because Q-1 does not exist at tf

(since Q(t4 )=O). Thus, in LQP, the S, R, and Q equations are

integrated backward for a small time increment, and then a

switch-over to the direct computation of S-R0 1RT and RQ- 1 is

made. This, of course, saves computer time.

Finally, it should be noted that S-RQ-IRT can become

unbounded. This means that the proposed problem does not possess

an optim&l solution (or a unique optimal in very special cases),

and the time at which S-IRQ IR' becomes unbounded is called a

conjugate point. The program, LQP, prints out the occurrence

of a conjugate point and stops the computation. This is another

reason for choosing Sf> O, A(t) 2t O, N(t)=O, and no terminal

conditions because then one is guaranteed that a unique optimal

control exists 5 and no conjugate point can occur.



IL. ,SUYTRTY AND CO.TCLUSIOTS

This report contains developments of the linear quadratic

ontimal control problem1, one of v.hich does not involve optimal

control theory. The theory is applicable to the development of
neighboring optimal feedback guidance gains, and is useful as a
tool for synthesizing feedback control laws in general. A

computer program which requires only the pertinent matrices of
the linear quadratic problem is described in Appendix A, which

also serves as a self-contained User's Guide.

Knowledge of optimal control theory is not necessary to use
the computer program or to understand the development of the
expression for the optimal feedback control (see Section 2).
Thus, Section 2 and Appendix A may be learned in a relatively
short period of time twithout any background in optimization

theory.

The relationshins between classical feedback control design
and linear quadratic optimal control design were presented in
a number of lectures to NASA-JSC and contractor personnel in
July-August 1974 by 1. F. Powers. Lecture ,otes were handed out
at the lectures and are available upon request from rodern

Systems Analysis, Inc.

14
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USER'S ,UIDE FOU R I.

aL is a subroutine which solves the follow,.ing optimization

problem, which does not require iteration:

Minimi ze: J=,fx f f rx TA(t)x+2x(t t)u+uTB(t)u]dt (A.1)

0o

Subject To: =F(t)x+G(t)u , X(t o)x (A.2)

x,= 9 (A .3)

where x-n-vector, u=m-vector, =p-vector, and t and t are

specified. The notation of Eas. (A.1)-(A.3) is that of Ref. 1.

The user need only supply a "'l'TT,1' subroutine which defines the

parameters of the nroblem and calls LQP. If any of the matrices

A, IT, B, F, or G are time-varying, then a second subroutine

TIMJVAIR. which defines the time-varying matrices, must be supplied,

also. Since LQP employs the numerical integration scheme DVDQ

(which is a variable-stepsize, variable-order integrator; see

Ref. 2), it is recom~iMended that the time-varying matrices in

TII-VA_ be represented by cubic splines.

A.1 Basic Flow Of The Al ,orithm

As shown in Section 3, the solution of the optimal control

problen defined above is:
B-1 T T -1 T T -(A.4)

-=-B . (A.z+)

where

t16
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(RGB=GR. , (A.7)

If, as in most applications, Eq. (A.3) is not _resent, then the

solution is defined by:

-1 T mu= TN+GS]x (A.8)

where S is still defined by Eq. (A.5). Since the latter nroblem

requires much less integration and logical operations, it is

advantageous to model the control problem without an Eq. (A.3)

(if possible) and a flag exists in the program for this purpose

(IFLAG1).

The flow, of the computations is as shovn in Figure A.1,

i.e., the values for S(tf),R(tf), and Q(tf) are defined, numerical

t nf S(tf)

SIntrate For: i
S(t, R(t), (t) Set R(t)

Q(t )

Figure A. 1. Flow Of The Comutations.



integration proceeds backvrard to to, and then the optimal state

and control are defined by a forward integration.

A.2 Selection Of Weighting iatrices

In the optimization problem of Eqs. (A.1)-(A.3), the

matrices F(t), G(t), M, and T are defined by the process,

e.g., F and G typically result from linearization about a nominal

trajectory. If pure neighboring optimal guidance is to be used,

then the matrices in Eq. (1) are also well-defined (e.g., see

Refs. 1, 3). However, most applications will probably require

the specification of the weighting matrices Sf, A(t), N(t), and

B(t) by the guidance or control designer. In this section a

"rule-of-thumb" for weighting matrix selection which has proved

useful in a number of applications (Ref. 1, 4) will be presented.

To get started on a design, assume N(t)=O, i.e., no mixed

state-control terms in Eq. (A.1). In most cases one will not

have to employ a nonzero N-matrix at any timb in the design. The

only remaining matrices are Sf, A, and B which weight terminal

state values, state trajectory values, and control values,

respectively. If Eq. (A.2) results from linearization about a

nominal trajectory (the usual case), then x and u actually

represent deviations from the nominal. In such a case, one usually

has some idea of the tolerable deviations for each variable. Thus,

assume it is desired that:

1xi I d I < I U . ,n) (A.9)

Ix (t) -i lt) (i=1, . . . ,n) (A.10)

u i(t) < (t) (i=1,. . . ,m) , (A.11)
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i.e., the maximum deviation fromn the nominal value associated

with x1 is + 7 , and so on. Th'en, the smaller the value of

( (e.g., 71f), the larger the veightino- of () (e.g., xf)

should be in Eq. (A.1), and vice versa. A choice which satisfies

this criterion is:

1

2-2if

S f= (A.12)

A(t)=(.

A( t) (A.13)
1

2t

71 2(t)2

B2t)=

U 2
(t)= (A.13)
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Ticallv the -. (t) and - (t) values are constants; however in

Shuttle reentry one may wish to change the weighting matrices

from one flight phase to another (e.g., from the constant drag

phaase to the equilibrium glide hase and so on). One can then

compute the resultant optimal control with LQP, and check to

see if the resultant feedback control meets all specifications.

If not, the weighting matrices should be modified, and, of course,

the modifications are problem dependent. In any case, Eqs. (A.12)-

(A.14) give, at least, a well-defined start to the feedback gain

design process.

Finally, to save computer time, B-  will be supplied to

the program instead of B. Usually B-  is easily calculated

beforehand (if not, the computation can be done in TIM7VAR).

A.3 LOP Argument List

In this section the variables employed in LQP will be listed

along with their type (integer or double precision), dimension,

and identification with the variables in Eqs. (A.1)-(A.3). A

"!AIN' subroutine (to be discussed in the next section) is to be

supplied by the user, and a call to LQ.P is made from 2MAIN. The

CALL-statement is:

CALL LQP(N,, IP,IFLAG1ILG2,TI,TF,, EP, SF, A,DN,BINV,,G,
DM, PSI , , 0R DX,,RQ, ,. , Q, U, XDT, DT, KYI:, DUIM1
DUUN12, DUI., DU' , DUM5 ,DUi6, DU7,DU M8, oDUM9DUM1, DUi1
XL, XLDOT,,1DU, 12)

The variables in this call are defined as follows, where I=integer,

D-double precision, LZsingle precision, and

K=n(n+1),/2 + np-.(/+1)/2+n
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rogram Problem Variable
Variable Variable Tme Dimension

ii I scalar

SI scalar

I_ a I scalar

IFLAG1 -- I scalar

IFLAG2 -- I scalar

TI t D scalar0
TF tf D scalar

I

EP -- E scalar

SF S f D N*(N+1)/2

A A D N* (N +1)/2

DN D N*M

.V B -  D 1(+1)/2

F F D N*.

G G D -1*.

D M D N*IP(If p=0,DIf=1)

PSI D IP(If p=0,DIM= 1)

X x D .

.. -- D K

DSR-I -- D K

S S D N* (+1)/2

R ) D N*IP(If p=O,DI) 1

DI=1)

U u D M

XDT D U

DT -- D (17,K)

REPRODUCIBILITY OF Tfl
ORIGINAL PAGE IS POOR



Prograr Problem Variable
Variable Variable T-.e Dimension

S--D

DUM2 -- T NT

DUMS -- D TT

DU-- D .,.

.DU1M -- D ,*M

DUI6 D N*1(If p=O,DIM=1)

DU-7 -- D *IP(If p=O, DIM=I)

DU8 -- D N*IP(If p=O,DIM=1)

DUi9 -- D IN*IP(If p=O,DI= 1)

DUII1 0 -- D 1

DU 1 -- D i* (M+1 )/2

XL p(see Eq.3.9) D N

XLDOT j(see Eq.5.9) D N

DUTI1 2 -- D N

The variables above which are not problem variables are

described below. Except for ITLA G1, IFLAG2, and ~P, these

variables are LQP and DVDV "working variables" which are of no

concern to the user except for DITENSIO statements (and the

dimensions are well-defined in the list above).

IFLAG : flag set by user indicating presence or absence of

terminal con ditions; =0 if terminal conditions present,

and =1 if no terminal conditions.
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IFLAG2: flag set by user indicating time-variability of

matrices; -0 if A, , DIN, F, G are time-invariant,

and -1 if at least one of these matrices is time-

varyinzg (in iwhich case the user must supply a subroutine

TIrAR) .

E: absolute local error indicator for the numerical integration

scheme DVDQ; this parameter is problem dependent, but a

safe initial choice is 1.E-5. (See Ref. 2. for a more

thorough description of 1P.)

SRQX: contains the vector being integrated by DVDQ. If terminal

conditions present, SR1X contains S, R, Q (expressed in

vector form) going backward and S, x, Q, k going forward.

If no terminal colnditions, SRQX contains S going backward

and x, p going forward.

DSRQX: contains the time derivative of SRX.

DT: storage required for DVDQ.

KQ: storage required for DVD.'.

1, : storage required for DVNQ.

DUI1 through DUMi 2: dummy storage required for LQP matrix

manipulations.

A.b- 1Matrix To Vector Conversions

Even though Eqs. (A.1)-(A.3) are written in matrix form, the

computer program operates in a vector mode. (The only matrix

dimension is for DT, which is part of the integrator, DVDQ).

Thus, all matrices must be converted to vectors, and since some

of the matrices are sy--:etric, considerable savings can be gained

by distinguishing between general and symmetric matrices.
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A number of subroutines from Ref. 8 are employed in LQP

to perform the various matrix manipulations. These subroutines

assume that the matrices have been converted to vectors column-

by-column. That is, consider the three-by-three matrix A:

a1 1  a 1 2  a 1 3

A= a 2 1  a 22 a 2 3 (A.15)

a31 a32 a33

If A is a general matrix, then it wvll be converted to a 9-vector

column-by-columnr , i.e.,

A(9)=ra 1 1 a21 a3 1 a 1 2 a 2 2 a3 2 a 13 a 2 3 a ]T (A.16)

(General Matrix Format)

If A is a symmetric matrix, then it will be converted to a

6-vector column-by-column of the uper triangular portion of the

matrix, i.e.,

A(6)=a 1 1 a1 2 a 2 2 a1 a2  a 3 ] . (A.17)

(Symmetric Matrix Format)

The various matrices are printed out in the same manner (i.e., as

n' or n(n+1)/2 vectors in the format of Eqs. (A.16) or (A.17),

respectively).

A. xamle Problems

A number of simple examples will be presented in this section

to illustrate the setup of MAI and TIiVJAR, typical printout,

and the output for a problem with a conjugate -oint.
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E xamnle A.1: Let x be a 3-vector and u a 2-vector.

T."'-r 1 2" " 2 
A.._.j

-nimimze - : J1=. (2 .2+u - ) dt (A. 1)

Subject To: 0 1 0 0 0

x= 0 0 0 x + 1 0 u (A.19)

1 0 0

0 1 0 x(1) = 0 (A.21)

001 1

Equation (A.18) corresponds to Eq. (A.1); Eqs. (A.19) and (A.20)

to Eq. (A.2); and Eq. (A.21) to Eq. (A.3). Since terminal

conditions are present, IFLAG1=0; and since all of the matrices

are time-invariant, IFLAG2=0. A value of EPi=1 Ox10 - 5 will be

used for the absolute local error control in the integrator.

typical HIc~ subroutine (the only information required by the

user) is shown in Figure A.2. The development of MAI involves

the development of a well-dcfined DIMN"SIO,-statement, data

input, and a well-defined CALL to LQP. (Also, note the 1EL EP

statement because EP must be single precision to avoid difficulties

on UNIVAC computers.)

The program begins the backward integration of S, Q, and R

at t=1, and the printout is shown in Figure A.3. Since only

-1 and -1are needed to define the oS7:S-R, I and ...., :_, -,I'Q are needed to "efine the otima! feedback1
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rgains, a switch to the S and ' system is ilade at t=0.95.

(Such a switch is possible only if -1(0.95) exists; if Q 0.95)

does not exist, then the pn-o.ra will sto, usually indicating

an abnor.a.l nroblem.) From 'i0.95 to t=, the S and : matrices

are printed out in hfo-rmat of Eqs. (A.17) and (A.16),

respeciv ly, since S is symmetric and W is a general matrix.

The first few forard integrations from. t=0 are showrn in

Figure A.., and the values of the resultant optimal state and

control are added to the printout. One can compare the backward

and forward values of S and* ! to aid in the choice of a value

for EP which gives the desired accuracy.

Examnle !A.2: Let x and u be scalars.

Iinimize: J=f 2 u2 dt

0

Subject To: x-x+u

x(O)=0 , x(-r/2)=1.0

This ontimal control roblem possesses a conjugate point at

t- T/2, which implies that there does not exist an ontimal

feedback control on the interval r0, 1T/21. The program detects

the possibility of a conjugate point when the numerical integra-

tion scheme begins to decrease the stepsize to a very small value

(which is necessary to get accurate values of S and W since

SI> ). The outu ut of the program denoting that this

behavior is occurring at t- Tr/2 is shown in Figure A.5.
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Exavjle AI.: Let X and u be scalars.

JInimiize: - " :1w u

Subject To: : , 0

This optimal control woblem p7ossesses time variable dynamics,

and, thus, the subroutine TIVAI is required. A typical TIMVAR

subroutine for this problem is shown in Figure A.6.
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INt'LIC IT REAL-a8(A-HO0Z)

~ Y~'i2~)~OM1 9) Du2(9 )Js1( 9,QLD)Ui2)
1~,Dugi(1,D) U~v2) OK(t179

N3 -

'12

!FLAG2=0
T I =0,*DO
TF= .)Do
EP~I --

00 2 ;=I is

3 Do I)

Do 9i 19 It..'...

* (fl14DO -

DO S 1 16 --

' .

G I )
00 6I19

PSI(2)*DO-

PS 5 1 3)= 100

A (2 2 0OQ

X 3) b 1)
CALL LQP(Nd~IPIFLAGlIFi.AG2'

1 1~E~St$U*I~tt$m

PSI XSQISQ,,,,,D~DBQYI~isU2DM,~ioom.
0U6DM*U8,U~DM0 

DU )L)XL1M 
AMV-

E NO

Fi-ure A.2 A. Tyv-ical -1A'Llhi Subroutine For Exapiple A'. 1.
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- BACKWVARD INTEGRiATION BEGINS AT T= IG00

S MATRIX: 0000000 *OOO0 000000

R MATRIX: 10000000 .000000 000000

R MATRIX: .000000 I,0000O

0 MATRpX: .000000 .00rOO0 000000 '

--- - -~L~ - - - --------- ~. ~ --.---.-.----- ~~-~--- T --. ~~.--T-:

5 MATRIX.: .000000 '000000 .000000 pC

R MATRIX: 1,000000 .050000 .000000 *

R MATRIX: .000000 1,08559

Q MATRIX: -.000042 -001250 -. 050000 e

SUCCESSFUL SWITCH TO-TILDE SYSTEM AT T= .950

T ,950

- 5 f T L E 96 4 17.82 627 - 2410 445657 .- 80o 261-1 ....

.T ..... -l-tDE):--- - 9 17--82&27-- .- 2 104.S565-7 - - -.. -7500- ....-

.. - (T LOE; -):---- -- .. -...... .--- - ----... . .19,975022--- - . . . . . . . ..- ---- - --

" -- . . .. . . ... .. ... .... .. .= -- -- "Z ... . ... .... .. . ' .. .... .. .... ..

T '902

- --- LD ----- -- ---.-j,--------- -- - -- .--.---.-----.--

S.T LOE1 . 129S545189D.- 631.532797 .1.03639'j

w TILDE) -12954-,518909 -- -- 631.532797- - - -- 00000 -c ---

I W- TrLDET: .000000 - 10.20782-2 - ------

Figure A.3 Backward Integration Printout For

Example A.1, VIith Svitch At t=0.95."
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FORWARD INTEGRATION STARTS

T =  
000

-. T LD . . . 00000 6..... 00003 . . .. . . Q00000 - .

.. . T. .I LDE - .. ... .- . 0 000 -.. .... ........ -- 632 .........- - - . .... .--- ...

........ -- - AT- ...... ......... -........ I.-- 000-.6 s7- - - -. 6-o O OD----- --- -.. . . ... -0000 ...... ......

*AE 1.0000-- - - 2,GOOOL'o ----- 0-0-000-- ,OO-oOO- -"

SCON. ROLT .A OO- .61-335 -7 - -.9977

-. WTILDE-- -8- -3 - -6.613351 . , 099977 ."

------- I LDE--: - --- a.00000 ... -,690923

STATE: .1079635 1.362075 - o03008a6 ---.

-CONTROL-:--- .-12- .860006 . - - e60'733 . -

Figure A.L Forvard Integration Printout
For Examille A. 1 .
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T: 8.365

3-2(30 9',5

REPRODUCIBILITY OF THE
ORIGINAL PAGE IS POOR

>32

S (TILDE): -15.36 161

W (TILDE): -16.391674

, r ,,I 1 ,I, i, , * I 1 1 1 I I, , 1 1 't ! I I I 1 !

!DVDQ SUSPENDS EXECUTION WItH IFLAG = 7 ,

SI IFPLAS = 7 (MI*NIUM STEPSIZE EXCEEDED)i,

! IKELY A CONJU3ATE POINT EXISTS AT

T =1.57342

Figure A.5 Printout Denoting The Occurrence Of A
Conjugate Point In Example A.2.

SUBROUTINE TIMVAR(T,N,M,AD.N,BINV,F,G)
IMPLICIT REAL-*8(A-H,C-Z)
DIMEN SION A(I) ,ON(1) ,81NV(1 ,F(1),G I

F(I) =T*T
G(I)=T
RETURN
E 1 D

Figure A.6 A Typical TI VA.. Subroutine For
Example A.3.


